Parallel Implementation of Numerical Dissipation Rate and Viscosity Post-processing in Computational Fluid Dynamics
نویسنده
چکیده
In simulations of Computational Fluid Dynamics (CFD), the numerical dissipation generated from discretization of governing equations can rarely be ignored. Estimating numerical dissipation rate and numerical viscosity is not only pressing for subgrid scale (SGS) modelling in Large Eddy Simulations (LES) and low order methods such as Finite Volume Method (FVM) in commerical codes, but also helpful for higher order methods in Direct Numerical Simulations (DNS) to assess the necessity of mesh refinement in specific regions. Following the recent work of Schranner et al. [1], we develop a parallel algorithm to evaluate numerical dissipation for existing CFD data, which allows to compute numerical dissipation rate and numerical viscosity in physical space for arbitrary sub-domains. The method will be tested for wallbounded turbulent flows, numerical dissipation of this postprocessing tool are compared with results computed directly inside the solver, the self-consistency can be verified using an accurate, pseudo-spectral solver for different mesh resolutions. The information computed by this post-processing step will enable us to determine the accuracy of simulations efficiently without time consuming trial and error validation process. Keywords-numerical dissipation; turbulent flow; parallel computing;
منابع مشابه
Impact of Magnetic Field on Convective Flow of a Micropolar Fluid with two Parallel Heat Source
A numerical study is performed to analysis the buoyancy convection induced by the parallel heated baffles in an inclined square cavity. The two side walls of the cavity are maintained at a constant temperature. A uniformly thin heated plate is placed at the centre of the cavity. The horizontal top and bottom walls are adiabatic. Numerical solutions of governing equations are obtained using the ...
متن کاملChemical Reaction Effects on Bio-Convection Nanofluid flow between two Parallel Plates in Rotating System with Variable Viscosity: A Numerical Study
In the present work, a mathematical model is developed and analyzed to study the influence of nanoparticle concentration through Brownian motion and thermophoresis diffusion. The governing system of PDEs is transformed into a coupled non-linear ODEs by using suitable variables. The converted equations are then solved by using robust shooting method with the help of MATLAB (bvp4c). The impacts o...
متن کاملReducing numerical dissipation in smoke simulation
Numerical dissipation acts as artificial viscosity to make smoke viscous. Reducing numerical dissipation is able to recover visual details smeared out by the numerical dissipation. Great efforts have been devoted to suppress the numerical dissipation in smoke simulation in the past few years. In this paper we investigate methods of combating the numerical dis-sipation. We describe visual conseq...
متن کاملParallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit
The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...
متن کاملEntropy generation analysis of non-newtonian fluid in rotational flow
The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016